7 'AD-A139 237

UNCLASSIFIED

REMARKS ON THE AMBROSETTI-PRODI PROELEM(U) WISCONSIN

UNIV-MADISON MATHEMATICS RESEARCH CENTE

D G COSTA ET AL. JAN 84 MRC-TSR-2633 DAAGZQ 80-C-0041
F/G

12/1

17/

NL




"ﬁ' i .Iih‘ _0‘

S Zhlac o A

“H-I o Wk T
= w k2 g22
T L T
1), £ |
s 5
] |.8
= .
2 et e
= — =
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963-A
-




-

~

MRC Technical Summary Report # 2633
REMARKS ON THE AMBROSETTI-PRODI PROBLEM

D. G. Costa and D. G. de Figueiredo

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

January 1984

(Received November 21, 1983)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. 0. Box 12211

Regsearch Triangle Park
North Carolina 27709

OTIC FILE copy

o4

DTIC

ELECTE
MAR2Z 21984 -

i o 14




.

'y m M LWSQ;*WW..‘,., e

e o

UNIVERSITY OF WISCONSIN-MADISON j
MATHEMATICS RESEARCH CENTER
|

REMARKS ON THF. AMBROSETTI-PRODI PROBLEM

D. G. Costa* and D. G. de Figueiredo**

Technical Summary Report # 2633

January 1984

ABSTRACT

\/The Ambrosetti-Prodi boundary value problem with an asymptotically linear

nonlinearity is considered. Under general conditions on the nonlinearity it

is. shown that there exist positive and negative solutions. In the case when

R b + P >
W and the nonlinearity “crosses™ the first n

-

the domain is a ball in

eigenvalues, corresponding to radial eigenfunctions, it is proved that there

are at least n + 1 radial solutions.
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SIGNIFICANCE AND EXPLANATION

let 9 C EP be a bounded smooth domain. Let X’ be the first

eigenvalue of =~A on H;(ﬂ) and let ¢, > 0 be a corresponding
eigenfunction. The Ambrosetti-Prodi problem

(M -du = f(x,u) + h{x) + t¢1(x) in 2, u=0 on 319,
where t € R, h € C(ﬁ), ]h¢1 = 0, 1is studied. First it is proved that if
1ims+_wf(x,s)/s < X1 < lims*+°f(x,s)/s then problem (1) has a large
positive and a large negative solution for t < 0 large. The interest in
this type of solution comes from the fact that they play a special role in the
existence of other solutions. This has been observed before for special
classes of problem (1), by Lazer-McKenna, Solimini and Ambrosetti. If the
limit of f(x,s)/s at +° is larger than a higher eigenvalue, it is expected
that other solutions, besides the positive and negative ones, will appear.
Previous results of Hofer, Solimini and Ambrosetti indicate that this is the
case. They have been able to prove existence of up to six solutions. A
connection between the number of solutions and the number of eigenvalues which
are crossed has been proved to exist in the o.d.e. case by Lazer-McKenna.

Here the authors consider the case of a ball in ' and prove the existence

of many radial solutions. These solutions are characterized by the number of

their "nodal lines".

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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REMARKS ON THE AMBROSETTI-PRODI PROBLEM

D. G. Costa® and D. G. de Figueiredo**

Let 2 C®' be a bounded smooth domain. Let Aj €Ay € eer €A € ses denote the

eigenvalues of -4 on £ with Dirichlet boundary condition and 01 > 0 an eigenfunction

corresponding to Xi. We consider the Ambrosetti-Prodi problem

; (1)t ~8u = f(x,u) + h(x) + t¢1(x) in @, u=0 on 23R,

where h € C(E), ]h‘1 = 0, and fgakl + R 18 a continuous function such that there exist

the limits
, (2) lim -f—‘i.L'l = f, uniformly for x € f, with
13 .‘r -

3 AR WEE A f++xj.

We assume without loss of generality that £(x,0) = 0.

In Section 1 of the present paper we shall show that for t < 0 sufficiently large

problem (1)t possesses a large positive solution and a large negative solution. We

remark that for a special class of problems (‘)t existence of a negative solution was

first observed by Lazer-McKenna (3]. Subsequently, Ambrosetti (1] and Solimini ([5), again

for a special class of problems (1), proved the existence of both a negative and a

positive solution for t < 0 sufficiently large. In (2], one of the authors proved

existence of a negative solution for a general class of Ambrosetti-Prodi problemsy

including the superlinear case. At present we do not know whether a positive solution

In Section 2 we consider the case when £ 4is a hall and f is a C‘ function which

exiasts in the case of nonlinearities f which grow more rapidly than linear.
does not depend explicitely on n. Let us denote by U,y < ¥, € see¢ the eigenvalues

*Universidade de Brasilia (Brazil). Partially supported by CNPq/Brazil.

**Universidade de Brasilia (Brazil) and Guggenheim Fellow (1983).

Sponsored by the United States Army under Contract No. DAAG:9-80-C-0041.1
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of =~A acting on the radial functions of H;(ﬂ) (It is well-known that u, = l,)- We
assume there that the limits below exist and satisfy

(4) £ = lim f£'(s) < LI u, < £, = lim f'(s) <y nd> 1.
g+ gri

It is then proved that for t < 0 sufficiently large (1), possesses a radial positive

n+1’

solution Uy and a radial negative solution u.. It is also proved that given any
c + 0 there exists a radial solution u of the equation in [1), such that
ua-ce H;(ﬂ) and u - U, has at least n “nodal lines". More precisely there are at
least n concentric spheres vwhere the function u - U, vanishes.

In Section 3 we prove under the same assumptions of the previous section that problem
(1), has at least n + 1 radial solutions for t ¢ 0 sufficiently large. Here we use a
shooting argument in a manner similar to the work of Lazer-McKenna [4]. In their paper
they treated a two~point boundary value problem, which is the o.d.e. analogue of (1),
with =-Au replaced by -u®". Our analysis would correspond in their case to looking for
solutions which are symmetric with respect to the middle point of the interval. Without
this assumption of symmetry they can actually obtain 2n sclutions. We believe that this
is also true in the p.d.e. case because we are in fact crossing also a number of
eigenvalues that correspond to non-radial eigenfunctions. As a matter of fact we prove in
Section 4 that this is the case when N = 3. PFinally we observe that in the case when {l
is a region between two concentric spheres there are at least 2n solutions for problem

(1),, t < 0 large.

1. Existence of large positive and negative solutions

In this section we let n<:|P be an arhitrary bounded smooth domain. Let
l1 < Az € eee & Xk ¢ *e¢ denote the eigenvalues of -A on f with Dirichlet boundary
condition and 0' > 0 an eigenfunction corresponding to Xi. We consider the

Ambrosetti-Prodi problem

(1), -Au = f(x,u) + hix) + t¢1(x) in 9, u=0 on 23q,

-2-
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where h € c(ﬁ), ]h61 = 0, and f: axll + R is a continuous function such that

f(x,0) = 0 and there exist the limits

(2) lim fix8) = ft , uniformly for x € 5, with
s+iw
(3) LI R A f++»\j.

We shall show that for t < 0 sufficiently large problem (1), possesses a large
positive solution and a large negative solution. To that end consider the related

problems

(1): -Av = £v+Elx,veab) +h in R, v=0 on 31, (a e R),

where £(x,s) = fi(x,s) - (f*s* -~ €8 ), so that

(4) lim bix,8) = 0 wuniformly for x e 5.

lalse  °®

Denote by s¥(a) the set of solutions of (1): and let Mt(u) = gup {Ivl v e stia)).
C

S
Lemma 1. lim M) 0.

la]+=

+
Proof. We shall consider only the case of M {a), the other case being entirely

similar. Any solution v € S+(a) is a solution of the equation v = K, E( .m¢1) + h},
where K : Lz(m * Lz(ﬂ) is the resolvent operator K = (-A-f*)-t {(which exists in view

of (3)). As it is well-known, x+ : CO(E) > C‘(a) is a bounded operator and, therefore,

any v € s+(u) satisfies

fvl R ] E(-,vm.,) +h 'Cc'

C
or yet, since one has by (4) that |E(x,s8)| ¢ e|s] + ¢, for all x eQ, s € R, where

€ > 0 can be chosen arbitrarily (and c depends only on €),

€

Wt _ <c, [ elvl  +elal 06,8  +c_+1h} 1.
c 1 + co 1 C° € Co

Choosing € > 0 so that 1 - c, €2 1/2 one obtains

Mt <2c celal %o, 0+ 2 c (c_+thl )y,
C‘ + 1 C° + € co

from which the claim follows readily. [ ]
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such that for all

Theorem 1. Suppose that (2) and (3) hold. Then there exists t, < 0

t < to problem (1)',_ has a positive solution Ue and a negative solution u, satisfying

u é u L]
t 1 t 1
(5) lilﬂ I__ I - lm l —-—:—I = 0‘
pom 1t At b1 P b e T M

Proof . Let N > 0 be such that w + ¢‘ > 0 for all w satisfying

! Wl <, w|32 = 0. By Lemma 1 there exists a, > 0 such that
o]

+
M (a) Sna for all a > a s that is,
(6) v 1 <na

) +
for any solution v of (1)“, a? a,. For any such v, in view of the choice of n and

the fact that Iv/al 1 < n, we have that
C
= v
(7) U-v+a¢1=a(a+01)>0.
So U is a positive solution of the problem
~Au = f+(u-001) + E(x,u) + h + n,o, in A, u=0 on 39,

for a > a that is, U is a positive solution of (1), for

t=al-f) Sa (A -f) = :;. And, in view of (6) and (7), U/t satisfies the
inequality
N
u 1 \ n
L 1, =Yy A,
t x1-f* c' t c1 :+-x1

Similarly, we prove the existence of a negative solution uy of (1),,_ for

t €~ uo(x1-f_) = to satiafying

|
{
ot _ L o, <=2,
t X1-f_ c1 x1-£_
The proof is complete by letting to = min (t:,t;} and noticing that the chosen n > 0
can be taken arbitrarily small. -

2. T™e case vhen 1 is a ball

-t
? We now let I Dbe the unit ball B = B4(0) C R’ and consider the Ambrosetti-Prodi
t
+

problem
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(B)t =Au = f(u) + h + t¢1 in B, u=0 on 98,

where h € C(B) is a given radial function with th, =0 and £: R+ R isa C'

function satisfying £(0) = 0,
(9) lim £'(s8) 2 £_ < Hyo u, < lim f£'(8) = f+ < Bopqr B > 1.

L Mo a4

Here we are denoting by "1 = Ll < u2 € ses the eigenvalues of =A acting on the
radial functions of H;(B), that is, the eigenvalues of the problem
(10) -u"-y;—1u'5uu,o<r<1, u'(0) = u(1) = 0.
As it is well-known, these eigenvalues are given by u 3 =V jz wvhere the Vv j'l are the
positive zeros of the Bessel function J(“_z) /2¢ and corresponding eigenfunctions are

given by Oj(r) = r-m-“/zam_z)/z(vjr).

Theorem 2, Under assumption (9), there exists t4 < 0 such that for all t < ¢t,

problem (8), has a radial positive solution U, and a radial negative solution

u, satisfying {5).

Proof. In view of Theorem 1 there exists t, < 0 such that for all t <« "o problem
(8), has a positive solution U, and a negative solution u, satisfying (5). It
remains to show that both U, and u, are radial functions for t < to sufficiently
large. Indeed, letting :t - aut/au denote any angular derivative of Ut, z, satisfies
-Azt - !'wt)'t in B, 't =0 on 3B. Therefore if we agssume that zt 7o, 't is an
eigenfunction of the above problem corresponding to the eigenvalue 1 = ) 3 (e (Ut))' But
then the fact that Ut(x) + +» for all x e B and the Lebesque dominated convergence
theorem imply that £'(U,) + £_ in P , p> 1, and hence that
1= (f'wt)) + A, (£)=),/8 as t + -», which is a contradiction. Similarly we

3 I+ y.
show that u, is a radial function for ¢t < t, sufficiently large. -

Now we make the change of (dependent) variables u = w + U, to revwrite

problem (8), as




-Aw = t(vﬂ)t) - f(Ut) in B, w= 0 on 3B,
or yet as
(i, -Aw = £ow+ g(wvt) - q(Ut) in B, w=0 on 9B,
where g(s) = f(s) - f_s. Notice that, in view of (9), g : R+ R is a c! function
satisfying
(12) lim g'(8) = £ =~ f_, 1lim g'(s) = 0.
g+—o . gr4m

On the other hand, given 0 4c € R, let us define the function

v (r) = < Jm-z)/z(ﬁ*ﬂ r = |x|
(N-2)/2 ‘ *
r J(N—2)/2 (E‘_)

Then it is easy to see that vV 1is a solution of the problem
(13) -Av = f#; in B, v=¢ on 3B,

and, since v, < VT, < “n by (9), ¥V vanishes on the n concentric spheres

+ +1

r-rj-vj/v,!?* (3=%,...,n) in B,

Theorem 3, Suppose (9) holds and let 0 # ¢ € R be given. Then there exists

t = t(c) < 0 such that for all t < t problem

(14) -Au = £(u) + h + té in B, u=c on 3B,
t,T 1
has a radial solution U with the property that T - U, vanishes on n concentric

apheres in B.

Proof. We want to find a radial solution w of (11),, with the boundary condition
replaced by w = ¢ on 3B, and such that w vanishes on n concentric spheres in B.
Since the function ¥ has this latter property and its n zercs in (0,1) (as a function
of r) are all simple, it suffices to find a solution 2z of the problem

(15)t Az = f*: + g(u»;ﬂlt) - g(Ut) in B, =0 on 3B,

with 120 <€, € = €(c) sufficiently small, for then T=z + ¥ + U, is a solution of

co

-6-




(14) with the desired property that T - U, =z + ¥V vanishes on n concentric
t, T

spheres in B. (We point out that the same argument used in the proof of Theorem 2 shows

that the solutions cf (15)t are radial for t < 0 sufficiently large). So lLemma 2 below

concludes the proof.

Lemma 2. Given € > 0 there exists t = t(€) such that for all ¢t < t problem (15),

has a unigue solution 2z satisfying fzl ° < €.
c

Procf. We observe that solving (15), is equivalent to solving the operator equation
2root t

z = KGt(Z) H Tt(z),
where X : L2(B) > H;(B) is the resolvent operator K = (-A-f“\)-1 and Gy is the

Nemytskil operator associated with the function g(z#V(r)+Ut(t)) - g(Ut(r)). We also

o e —— e .

observe that the regularity theory for elliptic equations implies that K maps 1P(B)
continuously into wz'P(B) and (12) implies that G, maps 1P(B) continuously into

into W2'P(B). Given the ball B_(0) in C (B), we
€

° shall show that for t < 0 sufficiently large we have T (B_(0)) CB_(0) and T,  1is a
€ €

and using the Sobolev imbedding theorem, we have

itself, so that T, maps tPiB)

! ‘ contraction. Indeed, fixing p > N/2

fr (et < clT (2)0 = cIXG_(t)1 < const. | G_(z)1 ’
t Cp t wz,p t wz,p t Lp
1G (z)1 >0 as t > = uniformly for z € B (0), since we can estimate
L €
1G_(z) < S(eilz + vl where S8(t) + 0 as t + -= (In computing 1G_(z)1 apply
t L co t l:‘p
the mean value theorem for the function g and use the Lebesgue dominated convergence

and

———
.

L 8 theorem, keeping in mind that =z +v o+ Ut + 4@ pointwisely in B and that

' g'(s) + 0 as s + +»). Therefore, Tt(q_(b)) CB (0) for t < 0 sufficiently large.
€ €
T similarly, for arbitrary 2., 2, € B (0), we have the estimate
€

- « - [4 . -
: th(z1) Tt(z1)'c° € const lct(z1) Gt('z)le const G(t)lz1 zzl
where §8(t) + 0 as t > -=, so that T : B _(0)+ B_(0)

€ €

sufficiently large. The proof is complete. »

c°
r
is a contraction for t < 0

I
!

g AN s i A
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Remark. It should be pointed out that we stated and proved Theorem 3 as a p.d.e. result,
ignoring for the time being its natural 1-dimensional character (i.e., search of radial
solutions in a ball). The reason for that is the fact that indeed, for an arbitrary
bounded smooth domain I, Theorem 3 has the following analogue which we now describe.

For given 0 + c €R, Ilet Vo denote the solution of the problem
-y = f+v in @, v=¢c on M (i.e., v, = (-A)(-A-f+)-1c). Suppose that for some
© 40, v=v_ satisfies the condition that Vv(x) $ 0 whenever v(x) = 0, that is, the
graph of v :l transversal to Qx{0} at the points of M x {0}, where
M= {xealv(x) = 0} is the "null manifold” of v. Let m be the r er of components
of M. Then, for t < 0 sufficiently large (and under hypotheses (%) “here exists a
solution u of the problem

-Au = f(u) +h+t¢1 in @, u=c¢ on 931,

such that u - Ut has at least m “nodal lines”, that is, the null manifold of u - U

has at least m components.

3. Existence of many solutions

In this section we consider again the case when £ is the unit ball
B = B,(0) C® ana prove under the same assumption (9) of the previous section that the
Ambrosetti-Prodi problem (B)t has at least n + 1 radial solutions for t < 0
sufficiently large. For that matter we shall use a shooting arqument as in (5].

It should be remarked that only from now on is that the one-dimensional character of
problem (!!)t will play an important role in proving the existence of other solutions
besides U, > 0 and 4 < 0, when n > 2 4in (9).

So, we start by rewriting (e)t as
(‘ls)t -u" ~£;—1-u' = flu) + h + té,, D <y ¢1, u'(0) = ul1) =0,
which in turn, again through the change of dependent variables u(r) = w(r) + U, (r), can
be rewritten as

Ne=1
(17a), -w" --Tv' - f’ w + g(tﬂ'Ut) - q(ut) ,0c¢Cr <1,




(17b) w'(0) = w(1) =0,

where we recall that g(s) = f(s) =~ £.8.

lemma 3. The initial value problem

-w" - Ll } w' = f w4 glwtU_(r)) - g(u _(r)), 0 <r <1, w(0) = a, w'(0) = 0,
4 + t t

has a unique solution w(r) = w(r;a) which is defined for 0 < r < 1 and depends

continuously on & € R.

1.
Proof. Since w" A r“"

- [
N 1w') , it can be seen that the initial value

(x
problem in question is equivalent to the following Volterra integral equation
r

w(r) = a + [ K(r,q) F(g,w(g)}da,
0

g N=-2
where F(c,s) = f+s + g(s + Ut(o)) - q(Ut(u)) and XK(r,o) = ;%5 ((;1 -1]. since the

kernel X(r,o0) is nice, the result follows from the standard theory of Volterra

equations.

Theorem 4. Under assumption (9), there exists t, < 0 such that for ali t < t2 problem

(17)t has at least n distinct non-trivial solutions Wor Wer ese, Wp_y with ~he

property that wj(r) has exactly 3j simple zeros in the open interval (0,1) and

vy (0) <0, =0, ..., n-1. (Therefore, for ¢t < t, problem (8), has at least the

n + 1 distinct radial solutions Uer wj + U, J =0, seey n=1.)

Proof. PFrom Theorem 2 we already know 2 solutions for problem (17),, namely w = 0
(corresponding to the positive solution U, of (ﬁ)t) and w, = w - U <0 (corresponding
to the negative solution u, of (a)t), provided ¢t < t1- On the other hand, from Theorem
3 we have a solution W= 1 - U, of equation (17a)t, for t € t, such that w(r) has

n simple zeros in the open interval (0,1) and W(0) < 0 (take T in (14) 8o that the
t,©

-9~




function v in (13) satisfies ;XO) < 0). Therefore, in view of Lemma 3, we can uge the
idea of lLemma 2.3 in [4] to show that, for each 0 ¢ j < n, problem (17)t has a solution
vj(r) with exactly j simple zeros in (0,1) and such that vj(o) < 0. ' .
4. The case N = 3

In the case that £ is the unit ball B = B4(0) in R we are able to improve
Theorem 4 and obtain 2n radial solutions for the Ambrosetti-Prodi problem (8),, t <0

sufficiently large. Namely, we have

Theorem S. let N = 3 and suppose (9) holds. Then, for all t < 0 sutficiently large,

problem (17)t has at least 2n~1 distinct non-~trivial solutions Vi 3 = 0,s0.,n-1, and

~

:j' 3 =1,..,n=1, with the property that "j and w have exactly j simple zeros in
{0,1) and vj(O) <0, ;j(O) > 0. (Therefore, for t < 0 sufficiently large, problem

(8), has at least the following 2n distinct radial solutions: Ugo vy + Uy, J =0, «os,

n-1, w, + U, =1 ..., n=1,)

3 t

Proof. By making the change of variables v(r) = rw(r) and letting vt(r) H tUt(r), we

transform (17)t into the problem
(18), =g v+ ;(r,th) ~9(v,), 0 <x <1, v(0) = w(1) =0,

where ;(r,v) z rgl(v/r). Notice that (9) (hence (12)) implies that ; is continuous

" on (0,1 xR g is

on [0,1] x R (by defining ;(O,V) - (f+-t_)v~), ; is of class C v

continuous on (0,1] x (R\O) and satisfies lim ;v(r,v) =f - f*,
-

lim ;v(r.V) = 0 uniformly for r € [0,1]Y* Therefore, problem (18)t can be treated in a
s:;::.z manner as the problem in {4]. It then follows that (18), has solutiocns vye
j~0, ..., n-1, anad ;j' 4 =1 ..., n=1, puch that vy and ;j have exactly 3
simple zeros in (0,1) and vj'(O) <0, ;;(0) > 0. Going back to our original
(dependent) variable we first claim that if v(r) is a solution of (18)t then w(r) =

vir)/r is a solution of (17)t' Indeed, the only non-obvious property to check is that

«10-
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Ry

wi{r) satisfies the boundary condition w'(0) = 0. For that we obhserve that any

solution v(r) of (18), satisfies v"(0} = 0, so that using L'Hospital's rule we obtain

' - » "
lim w' (1) ..umsv_(_r.%_ﬂ_a.u,z_v?m..uﬂ_ 0.
3 2
r+0 r40 r r+0

Consequently wj(r) = vj(r)/r and ;j(r) = ;j(r)/r are solutions of (17)t with the
stated properties. [

Remark. We observe that in the case R is the region between two concentric spheres in

RN, say € <r <1, we again obtain 2n radial solutions for the corresponding :
Ambrosetti-Prodi problem. Indeed, we are led to the o.d.e. problem (17a),,
w{€) = w(1) = 0, or yet, making the change of variable v(r) = e(N-11/2 w(r), to the
self-adjoint problem

C -~
v+ —g Ve £, v+ gr,vav) = S(r,Y), € Cx <, vie) = w(1) = 0,

4

where Cy = (N=1)(N=3)/4, and V,(r) and g(r,v) are as before.
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